Search results for "Computational simulations"

showing 2 items of 2 documents

Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo

2019

This article belongs to the Special Issue Viroid-2018: International Conference on Viroids and Viroid-Like RNAs. Viroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or several de novo independent evolutionary origins in plants. Here, we discuss the plausibility of de novo emergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixe…

0301 basic medicinePopulation dynamicsViroidMatemáticasvirusesPopulationPospiviroidaelcsh:QR1-502Computational biologycomputational simulationsVirus Replicationlcsh:MicrobiologyArticleNucleic acid secondary structureEvolution MolecularViral Proteins03 medical and health sciences0302 clinical medicineCircular RNAVirologypopulation dynamicsModular evolutionRepliconeducationPolymeraseBiología y BiomedicinaSimple replicatorsComputational simulationseducation.field_of_studyViroidstructure enumerationbiologysimple replicatorsviroidStructure enumerationRNARNA Circularbiology.organism_classificationRNA secondary structureViroids030104 developmental biologyInfectious Diseasesbiology.proteinNucleic Acid ConformationRNA ViralRepliconmodular evolution030217 neurology & neurosurgeryViruses
researchProduct

On the Finite Element Modeling of the Lumbar Spine: A Schematic Review

2023

Finite element modelling of the lumbar spine is a challenging problem. Lower back pain is among the most common pathologies in the global populations, owing to which the patient may need to undergo surgery. The latter may differ in nature and complexity because of spinal disease and patient contraindications (i.e., aging). Today, the understanding of spinal column biomechanics may lead to better comprehension of the disease progression as well as to the development of innovative therapeutic strategies. Better insight into the spine’s biomechanics would certainly guarantee an evolution of current device-based treatments. In this setting, the computational approach appears to be a remarkable …

modellingFluid Flow and Transfer Processesspinal columnlumbar spineProcess Chemistry and TechnologyGeneral EngineeringBiomechanicsGeneral Materials Sciencefinite element analysiscomputational simulationsfinite element analysis; spinal column; biomechanics; modelling; lumbar spine; computational simulationsInstrumentationComputer Science ApplicationsApplied Sciences
researchProduct